Запишите схему скрещивания морских свинок

Генотипы и фенотипы при скрещивании морских свинок

Розеточность шерсти — летальный ген у морских свинок

Задача 144.
У морских свинок розеточность шерсти доминирует над отсутствием розетки, ген розеточности в гомозиготном состоянии вызывает гибель эмбрионов. Определите вероятность (в %) гибели эмбрионов при скрещивании двух гетерозиготных розеточных морских свинок. В ответе запишите только соответствующее число.
Решение:
А — розеточность шерсти;
а — отсутствием розетки;
АА — гомозигота — гибель эмбриона.

Схема скрещивания
Р: Аа х Аа
Г: А; а А; а
F1: 1AA — 25%; 2Аа — 50%; 1аа — 25%.
Наблюдается 3 типа генотипа. Расщепление по генотипу — 1:2:1.
Фенотип:
1АА — розеточная морская свинка (гибель эмбриона);
2Аа — розеточная морская свинка;
1аа — безрозеточная морская свинка.
Наблюдаемый фенотип:
розеточная морская свинка — 75%;
безрозеточная морская свинка — 25%.
Наблюдается 2 типа фенотипа. Расщепление по фенотипу — 2:1.

Наследование окраски меха у морских свинок

Задача 145.
Скрестили коричневую морскую свинку с черной. Ген, отвечающий за проявление черной окраски, является доминантным, а особи, участвующие в скрещивании, будут гомозиготны по данным признакам.
а) сколько типов гамет образуют родительские формы?
б) сколько особей в F1 будут гетерозиготны?
в) сколько особей в F2 будут иметь черную окраску?
г) сколько особей в F2 будут иметь коричневую окраску?
д) какое расщепление по генотипу и фенотипу будет наблюдаться в F1 и F2?
Решение:
А — ген черной окраски;
а — ген коричневой окраски.

Читайте также:  Сколько срок беременности у морских свинок

Схема скрещивыания (1)
Р: АА х аа
Г: А а
F1: Aa — 100%.
Фенотип:
Аа — черная окраска — 100%.
Расщепления по генотипу и по фенотипу нет.

Схема скрещивыания (2)
Р: Аа х Аа
Г: А; а А; а
F1: 1АА — 25%; 2Аа — 50%; 1аа — 25%.
Наблюдается 3 типа генотипа. Расщепление по генотипу — 1:2:1.
Фенотип:
АА — черная окраска — 25%;
Аа — черная окраска — 50%;
аа — коричневая окраска — 25%.
Наблюдаемый фенотип:
черная окраска — 75%;
коричневая окраска — 25%.
Наблюдается 2 типа фенотипа. Расщепление по фенотипу — 3:1.

Выводы:
а) 3 типа гамет образуют родительские формы?
б) 100% особей в F1 будут гетерозиготны?
в) 75% особей в F2 будут иметь черную окраску?
г) 25% особей в F2 будут иметь коричневую окраску?
д) в F1 неблюдается единообразие особей и по генотипу и по фенотипу; в F2 расщепление по генотипу — 1:2:1, по фенотипу — 3:1.

Задача 146.
У черной морские свинки с курчавой шерстью при скрещивании с белым самцом с прямой шерстью появилось потомство — чёрный курчавый, черный гладкий, белый курчавый и белый гладкий детеныши. Определите генотипы родителей и потомства, напишите схему скрещивания. Какой закон генетики выполняется?
Решение:
А — ген черной шерсти;
а — ген белой шерсти;
В — ген курчавости;
b — прямаяя шерсть.
Так как при скрещивании черной морски свинки с курчавой шерстью с белым самцом с с прямой шерстью появилось потомство с четарьмя фенотипами, то это указывает на то, что для анализирующего скрещивания взята самка гомозиготная по обоим доминантным признакам. Известно, что при анализирующем скрещивании дигетерозиготы и рецессивной гомозиготы в потомстве равновероятно появление детенышей с четырьмя типами фенотипа и генотипа.

Читайте также:  Как лечить подкожного клеща у морских свинок

Схема скрещивания
Р: АаBb x aabb
Г: АB, Ab ab
aB, ab
F1: 1АаBb — 25%; 1Aabb — 25%; 1aaBb — 25%; 1aabb — 25%.
Наблюдается 4 типа генотипа. Расщепление по генотипу — 1:1:1:1.
Фенотип:
АаBb — чёрный курчавый детеныш — 25%;
Aabb — черный гладкий детеныш — 25%;
aaBb — белый курчавый детеныш — 25%;
aabb — белый гладкий детеныш — 25%.
Наблюдается 4 типа фенотипа. Расщепление по фенотипу — 1:1:1:1.

Выводы:
1) в анализирующем дигибридном скрещивании дигетерозигот и рецессивных дигомозигот все потомство имеет расщепление и по генотипу и по фенотипу — 1:1:1:1;
2) выполняется 2-й закон Менделя, анализирующее скрещивание дигетерозигот.

Решение генетических задач в старших классах

Решение генетических задач в старших классах.

Цель: обобщить опыт по решению генетических задач.

План: Значение решения генетических задач в школьном курсе.

1. Правила, облегчающие решения генетических задач.

1. Разделы: «Генетика» «Молекулярная биология» являются одними из самых сложных для понимания в школьном курсе общая биология. Облегчению усвоения этих разделов может способствовать решение задач по генетике разных уровней сложности.

Использование задач развивает у школьников логическое мышление и позволяет им глубже понять учебный материал по этой теме, дает возможность учителям осуществлять эффективный контроль уровня усвоенных учащимися знаний.

Большие трудности вызывает у учащихся решение генетических задач. Помочь учащимся в преодолении этих трудностей могут некоторые правила, облегчающие решение генетических задач.

Для записи результатов скрещивания используются следующие общепринятые обозначения:

Р-родители (от лат. parental – родитель);

F – потомство (от лат. filial – потомство): F1 – гибриды первого поколения – прямые потомки родителей Р; F2 – гибриды второго поколения – потомки от скрещивания между собой гибридов F1 и тд.

♂ — мужская особь (щит и копье – знак Марса);

♀ — женская особь (зеркало с ручкой – знак Венеры);

: — расщепление гибридов, разделяет цифровые соотношения отличающихся (по фенотипу или генотипу) классов потомков.

2. Правило первое. Если при скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается расщепление признаков, то эти особи гетерозиготны.

Попробуем решить задачу, используя это правило.

Задача. При скрещивании двух морских свинок с черной шерстью получено потомство: пять черных свинок и две белых. Каковы генотипы родителей?

Из условия задачи нетрудно сделать вывод о том, что в потомстве черных особей больше чем белых, а потому, что у родителей, имеющих черную окраску появились детеныши с белой шерстью. На основе этого введем условные обозначения: черная окраска шерсти – А, белая – а маленькая.

Запишем условия задачи в виде схемы:

Используя названное выше правило, мы можем сказать, что морские свинки с белой шкурой (гомозиготные по рецессивныму признаку) могли появиться только в том случая, если их родители были гетерозиготными. Проверим это предположение построением схемы скрещивания:

F1 АА; Аа; Аа; Аа; аа

Расщепление признаков по фенотипу – 3:1. Это соответствует условиям задачи. Убедиться правильности решения задачи можно построением схемы скрещивания морских свинок с другими возможными генотипами.

В первом случае в потомстве, не наблюдается расщепление признаков ни по генотипу, ни по фенотипу. Во втором случае генотипы особей будут различаться, однако фенотипически они будут одинаковыми. Оба случая противоречат условиям задачи, следовательно генотипы родителей – Аа; Аа

Правило второе. Если в результате скрещивания особей, отличающихся фенотипически по одной паре признаков, получается потомство, у которого наблюдается расщепление по этой же паре признаков, то одна из родительских особей была гетерозиготна, а другая – гомозиготна по рецессивному признгаку.

Задача. При скрещивании вихрастой и гладкошерстной морских свинок получено потомство: 2 гладкошерстные свинки, 3 вихрастой.

Известно, что гладкошерстность является доминантным признаком. Каковы генотипы родителей?

Используя второе правило, мы можем сказать, что одна свинка (вихрастая) имела генотип Аа, а другая (гладкошерстная) – аа. Проверим это построением схемы скрещивания:

Расщепление по генотипу и фенотипу – 1:1, что соответствует условиям задачи. Следовательно, решение было правильным.

Правило третье. Если при скрещивании фенотипически одинаковых (по одной паре признаков) особей в первом поколении гибридов происходит расщепление признаков на три фенотипические группы в отношениях 1:2:1, то это свидетельствует о неполном доминировании и о том, что родительские особи гетерозиготны.

Задача. При скрещивании петуха и курицы имеющих пеструю окраску перьев, получено потомство: 3 черных цыпленка, 7 пестрых и 2 белых. Каковы генотипы родителей?.

Согласно третьему правилу, в данном случае родители должны быть гетерозиготными. Учитывая это, запишем схему скрещивания:

Из записи видно, что расщепление признаков по генотипу составляет соотношение 1:2:1. Если предположить, что цыплята с пестрой окраской перьев имеют генотип Аа, то половина гибридов первого поколения должны иметь пеструю окраску. В условиях задачи сказано, что в потомстве из 12 цыплят 7 были пестрыми, а это действительно составляет чуть больше половины. Каковы же генотипы черных и белых цыплят? Видимо черные цыплята имели генотип АА, а белые – аа, так как черное оперение, или, точнее, наличие пигмента, как правило, доминантный признак, отсутствие пигмента (белая окраска) – рецессивный признак. Таким образом, можно сделать вывод о том, что в данном случае черное оперение у кур неполное доминирует над белым; гетерозиготные особи имеют пестрое оперение.

Правило четвертое. Если при скрещивании двух фенотипически одинаковых особей в потомстве происходит расщепление признаков в соотношении 9:3:3:1, то исходные особи были дигетерозиготными.

Задача. При скрещивании двух морских свинок с черной и вихрастой шерстью получено 10 черных свинок с вихрастой шерстью, 3 черных с гладкой шерстью, 4 белых с вихрастой шерстью и 1 белая с гладкой шерстью. Каковы генотипы родителей?

Итак, расщепление признаков у гибридов первого поколения в данном случае было близко к соотношению 9:3:3:1, то есть к тому отношению, которое получается при скрещивании дигетерозигот между собой (АаВв × АаВв, где А – черная окраска шерсти, а – белая; В – вихрастая шерсть, в – гладкая). Проверим это.

Г АВ, Ав, Ав, ав АВ, Ав, Ав, ав

F1 1AABB, 2ААВв, 2АаВВ, 4АаВв

1ААвв, 2Аавв, 1ааВВ, 2ааВв,1аавв

Расщепление по фенотипу 9:3:3:1

Решение показывает, что полученное расщепление соответствует условиям задачи, а это значит, что родительские особи были дигетерозиготными.

Правило пятое. Если при скрещивании двух фенотипически одинаковых особей в потомстве происходит расщепление признаков в отношениях 9:3:4, 9:6:1, 9:7, 12:3:1, 13:3, 15:1, то это свидетельствует о явлении взаимодействия генов; при этом расщепление в отношениях 9:3:4, 9:6:1 и 9:7 свидетельствует о комплементарном взаимодействии генов, расщепление в отношениях 12:3:1 и 13:3 – об эпистатическом взаимодействии, а 15:1 – о полимерном взаимодействии.

Задача. при скрещивании двух растений тыквы со сферической формой плодов получено потомство, имеющее только дисковидные плоды. При скрещивании этих гибридов между собой ( с дисковидными плодами) были получены растения с тремя типами плодов: 9 частей с дисковидными плод15:1ами, 6 со сферическими и 1- с удлиненными. Каковы генотипы родителей и гибридов первого и второго поколений?

Исходя из результатов первого скрещивания, можно определить, что родительские растения были гомозиготны, так как в первом поколении гибридов все растения имеют одинаковую форму плодов. При скрещивании этих гибридов между собой происходит расщепление в отношении 9:6:1, что говорит о комплементарном взаимодействии генов ( при таком взаимодействии генотипы, объединяющие в себе два доминантных неаллельных гена Аи В, как в гомо-, так и в гетерозиготном состоянии определяют появление нового признака).

Составим условную схему скрещивания:

Р сферические× сферические

F2 9 дисковидных; 6 сферических;

Если в данном примере присутствует комплементарное взаимодействие генов, то можно предположить, что дисковидная форма плодов определяется генами А иВ, а удлиненная, видимо, рецессивным генотипом аавв. Ген А при отсутствии гена В определяет сферическую форму; ген В при отсутствии гена А тоже определяет сферическую форму плода. отсюда можно предположить, что родительские растения имели генотипы ААвв и ааВВ.

При скрещивании растений с генотипами ААвв и ааВВ в первом поколении гибридов все растения будут иметь дисковидную форму плодов с генотипом АаВв. При скрещивании этих гибридов между собой наблюдается то расщепление, которое дано в условии задачи, следовательно, в данном примере действительно имело место комплементарное взаимодействие генов.

Задача. У душистого горошка два белоцветковых, но разных по происхождению растения при скрещивании дали в первом поколении пурпурноцветковые гибриды. При скрещивании этих гибридов между собой в потомстве наблюдалось следующее расщепление: 9 растений с пурпурными цветками, 7- с белыми. Каковы генотипы родительских растений?

Составим условную схему скрещивания:

Р белоцветковое × белоцветковое

F 9 пурпурноцветковых; 7 белоцветковых.

Анализируя результаты скрещивания, можно сделать вывод о том, что пурпурная окраска цветка определяется взаимодействием доминантных генов А и В. Отсюда генотип этих растений – АаВв.

Ген А при отсутствии гена В и ген В при отсутствии гена А определяют белоцветковость. Отсутствие в генотипе доминантных генов А и В обусловливает отсутствие пигмента, т. е. растения с рецессивным генотипом аавв тоже будут иметь цветки белой окраски.

Отсюда следует, что исходные родительские растения имели генотипы ААвв, ааВВ. Первое поколение гибридов – АаВв (дигетерозиготные).

Задача. При скрещивании растений тыквы с белыми и желтыми плодами все потомство имело плоды белой окраски. При скрещивании полученных растений между собой наблюдалось следующее расщепление: 204 растения с белыми плодами, 53 — с желтыми и 17 — с зелеными плодами. Определите генотипы родителей и их потомства.

Запишем условную схему скрещивания: Р желтоплодное X белоплодное р! белоплодное р9 204 белых; 53 желтых; 17 зеленых.

Расщепление 204:53:17 соответствует пример­но отношению 12:3:1, что свидетельствует о яв­лении эпистатического взаимодействия генов (когда один доминантный ген, например А, до­минирует над другим доминантным геном, на­пример В).

Отсюда белая окраска плодов определяется присутствием доминантного гена А или наличием в генотипе доминантных генов двух аллелей АВ; желтая окраска плодов определяется геном В, а зеленая окраска плодов генотипом аавв. Следовательно, исходное растение с желтой окраской плодов имело генотип ааВВ, а бело­плодное — ААвв. При их скрещивании гибрид­ные растения имели генотип АаВв (белые плоды).

При самоопылении растений с белыми плода­ми было получено:

9 растений белоплодных (генотип А! В!),

3 — белоплодных (генотип А! вв),

3 — желтоплодных (генотип ааВ!),

1 — зеленоплодное (генотип аавв).

Соотношение фенотипов 12:3:1. Это соответ­ствует условиям задачи.

Итак, генетику, как и алгебру нельзя хорошо освоить без решения задач. Без «сочной», «прочувствованной», глубоко понимаемой генетики не обойтись ни при каком профиле обучения. Это важный незаменимый компонент общей культуры и одна из необходимых опор целостного мировоззрения. Размышления над генетическими задачами тренируют ум, развивают сообразительность, формируют кибернетический подход, весьма ценный и самых далеких от биологии областях деятельности.

Колесников . Учебное пособие для поступающих в Вузы. Ростов – на – Дону. «Феникс» 2003 г. Ю, Вайнер задач по генетике с решениями. Саратов. «Лицей» 1998 г. А, Алферова о медико-генетическому консультированию. Челябинск. ЧГПИ «Факел» 1995г. Рязанова по генетике в школе. Челябинск 1995г. 120 задач по генетике. М; центр развития социально-педагогических инициатив. 1992г. Эфроимсон в медицинскую генетику. М; 1968г. Единый государственный экзамен. Биология. Варианты контрольно-измерительных материалов. – М.: Центр тестирования Минобразования России, 2002г. 128с.

Оцените статью